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Analysis of an Elliptical Conducting Rod
Between Parallel Ground Planes by
Conformal Mapping

B. N. DAS anp K. V. SESHAGIRI RAO

Abstract —The paper presents a conformal mapping analysis of an
elliptic conducting rod between parallel ground planes, where one of the
. principal axes of the rod is parallel to but not necessarily centered between
the ground planes. The conditions under which this analysis can be applied
to the cases of planar and circular conductors between ground planes are
obtained. Also, the formulation is extended to the special case of the
conductor above a single ground plane.

I. INTRODUCTION

RANSMISSION-line geometries consisting of a planar

strip conductor between parallel ground planes have
been studied using both analytical and numerical methods
[1]-[4]. Impedance data for transmission lines with circular
and elliptic inner conductors symmetrically located be-
tween ground planes have also been reported in the litera-
ture [5]-[9]. Also, Wheeler has suggested a method of
impedance evaluation for a number of other generalized
structures [10].

In the present work, the conformal transformation of a
conductor of elliptic cross section between the ground
planes into a parallel-plate configuration is developed. One
axis of the ellipse is oriented parallel to ground planes and
is displaced from the plane of symmetry. The formulation
is extended to the cases of asymmetrically located conduc-
tors of circular cross section and planar conductors along
either of the principal axes of the ellipse. This analysis
leads to a set of equations from which the characteristic
impedances of all the above structures can be determined.
The impedance data for two displaced positions are pre-
sented in the form of charts which can be used to obtain
the characteristic impedance of all the above structures.

The general formulation is then used to obtain the
conformal transformation for the case when one of the
ground planes is moved to infinity. The set of equations
obtained for general case reduce to a new set of equations
from which an impedance chart is obtained. For the partic-
ular case of a conductor of circular cross section above a
ground plane, the impedance data are compared with those
calculated using the transformation suggested by Decreton
[11].
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II. CONFORMAL TRANSFORMATION

Fig. 1(a) shows the coordinate system of a structure
which consists of a conductor with a curved boundary
located between the ground planes. The boundary of the
conductor is assumed to have structural symmetry with
respect to its principal axes which are oriented parallel to y
and x axes. The principal axis parallel to the x-axis is
displaced with respect to the plane of symmetry between
the ground planes. A Schwarz—Christeffd transformation
which transforms the upper half of Fig. 1(b) into the
shaded portion of Fig. 1(a) is given by

(I_Al)

Jn

\/(tz—l)(th%)

1+ — Ay —1

+ B,

(1

z=q£

1
1+ —
yn

0018-9480 /82 /0700-1079800.75 ©1982 IEEE



1080

where 4,, B,, C,, A, m, and n are constants

(1_A1) <1
n

0<m<l m>n and 0<

The term
+ (1 _ Al)

- —A-JzZ_—T]

is the curve factor [12].
Carrying on integration, (1) takes the form

Z:x+ijCI[u—Al{w(n,u|m)—\/;f(m,n,u)}
+j\/;1_>\g(m,n,u)]+B1 (2)

where C,=Cym, t=sin®=snu,u= F(®|m) is the in-

complete elliptic integral of the first kind and #(n; u|m) is

the incomplete elliptic integral of the third kind. The
expressions for f(m, n,u) and g(m, n, u) are given by
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where snu, cnu, and dnu are elliptic functions.
Boundary conditions required for the evaluation of the
constants in (2) are obtained from the coordinates of

P|Z=ja,t=~

i
fm

P(Z=j(b+r),t=—1)
P(Z=(r,+jb),1= —ay)
P(Z=j(b—r),t=+1)

Z=0,1=+—|.

Jm

Substitution of the boundary conditions at the points
shown in Fig. 1(a) into (2) and solving the resulting set of
equations results in the following relations among the
constants 4,, B,,C;, A, m, n, the ground plane spacing a,
the separation between strip and lower ground plane b,
and the semimajor and minor axes r; and r, of the ellipse
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where K(m) and #(n; K(m)|m) are complete elliptic in-
tegrals of the first and third kind, respectively, 7 = 3.14159,

and
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The curved boundary is transformed to a portion of the
real axis of the ¢ plane for which |7| <1. For [¢|<]1, u,
w(n; u|lm), f(m,n,u), and g(m,n,u) are real. (2) can,
therefore, be easily separated into real and imaginary parts
which are given by
R :C,[u—-Al{w(n; ulm)—n f(m,n, u)}]
ad;-In(M,)
27( A4, +1—n -7
a-\1—n
27( 4, +/(1=n) -A)
- m+\/;

—————— —2sin"

{1+ )

(6a)

I=b+Cynkg(m,n,u)+

—m-+yn

. {sin_ ! m

g
(6b)

From (2), (5e), (5f), (6a), and (6b) the coordinates x and y
of a point on the curved boundary which are respectively
the real and imaginary parts of the complex variable Z
satisfy the equation of the form

(_"_)2+(ZT_2)2:A2(m,n,>\)

n 1

™)

where the expression 42 is given by

2 2
o=(2) 52
p) ry

The right-hand side of (7) is numerically evaluated for ¢
ranging from —1 to +1, 0<m=<0.99,0 <\ < oo, and the
values of b/a equal to 0.1,0.4. Computed results reveal
that depending upon the value of b/a, A(m, n, A) is very
close to unity for certain range of values of m. The
boundary of the conductor assumes the form of an ellipse
under this condition. But this cross section near one or two
ground planes departs from the usual ellipse. For a particu-
lar value of m and b /a, the lengths of principal axes of the
ellipse depend on A. Depending upon the orientation of the

principal axes, the eccentricities of the ellipse are given by

3

€= 1—(:—;) , forrn=r (8a)
p

e, = 1—(%) , forr<r,. (8b)

The transformation from the upper half plane of Fig.
1(b) to the structure in Fig. 1(c) is given by [13]

W=u+ jo=

t dt
&AﬁhﬁM—wﬂ+&
ZKIF((I)'m)-I—KZ. (9)

Evaluating the constants K, K, from the coordinates of
the points P, P,, P;, and P,, (Fig. 1), (9) is obtained as

.
W:u+jv:—F(¢>|m)_F(s‘“ Vo )+1K'(’”)
: K(m) K(m) K(m)

(10

U,=1+ X (11a)
_K'(m)
Vo K(m) (11b)

III. CHARACTERISTIC IMPEDANCE.

Half of the structure shown in Fig. 1(a) is transformed
into parallel plates. The width of the parallel plates is 2
and 7V}, is the separation between them. Therefore, the total
capacitance per unit length of the line is twice that of the
parallel plate capacitor in Fig. 1(c) and is of the form

_ dege,
=5
The characteristic impedance of the transmission line
can be determined from the formula
307w

C’ (12a)

Zy=—1="T
e
_ 307 K(m)

= K (12b)
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A. Elliptic Conductor

It is evident from (12b) that the characteristic impedance
is dependent on the parameter s which is a function of the
shape and dimensions of the center conductor of the
transmission line.

For a known value of m and values of b/a equal to 0.1
and 0.4, values of n for A varying from O to oo are
determined from (5d). Then, 7, /a and r, /a as well as the
eccentricity of the ellipse can be computed. These results
are presented as constant impedance contours in Fig. 2 and
Fig. 3 in which r, /a and r, /a are coordinate axes. Imped-
ance data are presented for only those values of the param-
eters for which the cross section is an ellipse. From a
knowledge of r,/a and r,/a, the e, =constant, e, =
constant contours can be easily determined. These con-
tours are straight lines passing through the origin in the
r,/a—r,/a plane. For example, the intersection of a
straight line, for which e, =e, =0, with the constant im-
pedance contours of Figs 2, 3, and 4 gives the impedances
of the circular conductor between ground planes. The cross
section of the conductor under this condition is a circule
for the values of the parameters of Figs. 2, 3, and 4. This
straight line makes an angle 45° with the r, /a axis. The
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intersection of straight lines at angles greater than 45°
(with respect to the r, /a axis) and the constant impedance
contours gives the impedances for elliptic conductor with
major axis oriented parallel to ground planes. Inclinations
less than 45° give ellipses with the major axis oriented
perpendicular to the ground planes. The coordinate axes
r./a and r, /a represent cases for which the elliptic con-
ductors degenerate to straight lines. Movement along any
constant impedance contour from the 7, /g axis to the r, /a
axis corresponds to variation of A from 0 to co.

B. Strip Conductor Parallel to Ground Planes

For A =0, it is found from (5¢) and (8a) that
4 —0and e, =1.

a

Thus, the ellipse degenerates to a straight line parallel to

the ground planes. The corresponding transformation is

given by

Z=C1[u—A1{7r(n, ulm)—yn f(m,n, u)}] +B, (13)

where the constants C,, B,, and 4, are evaluated from (5b),
(5¢), and (5a) for A =0. (13) is of the same form as that
obtained by Rao and Das [13]. The corresponding imped-
ances for this strip of zero thickness are obtained from the
intersection of constant impedance contours with the r, /a
axis of Figs. 3 and 4.

C. Strip Conductor Perpendicular to Ground Planes

For A — oo, it is clear from (5f) and 8(b) that

Ly e,=1 and
a

rl 1 o — m+\/;l— ca—1 _m+‘/;
a

:E sin 1m—s1n ‘/;1_(1—‘/;)
(14)
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The ellipse in this case degenerates to a straight line €=1 4=9798 € =.9765 ?r/='0
oriented in a direction perpendicular to ground planes. The
impedances for this case and obtained from the intersec-
tion of the constant impedance contours with 7, /a axis of
Figs. 3 and 4.

D. Round Conductor
For a circular conductor (e, = ¢, = 0) (8a), (8b), and (5g)

give
A= 2ym—n-Q(m,n) .
/nS(m, n)

Substituting (15) into (5a), (5b), (5¢), and (5d) results in the
conformal transformation for an offset circular conductor
between ground planes.

¢=ep0

(15)

IV. THE CONDUCTOR ABOVE A SINGLE GROUND
PLANE

A. Elliptic Conductor

When one of the ground planes is moved to infinity, the
configuration of Fig. 1(a) reduces to the structure shown in
Fig. 5. In this particular case, a - oo and it is found from
(5d) that n > m.

Dividing (5¢) and (5f) by (5d) the expressions for , /b Fig. 5.
and r, /b are found. For n —» m these expressions assume
indeterminate 0/0 form. Applying L’Hospital’s rule and
substituting the expression for elliptic integral of the third

in Fig. 5, into upper half plane of the Fig. 1(b) is given by

kind for n =m, it is found that - -2 bm
n_ 2AE(m){m (162)  [mT=m +27E(m)]
b [mf1=m +2)E(m))
" | E(m)F(®|m)~ K(m)E(®|m)
o b L(m)  (16b) " " "

b [m/l—m +2>\E(m)]
y1—1¢2

T=m-L(m) (n e S Al P =
S by & o s (1]

where E(m) is complete elliptic integral of the second kind 1+ J,,T t—V1—me?
and + JAE(m)
1+{m¢
o, im
T Y 2/BAE(m)(1—1—m)
+ jb—

Jm ) [W\/l—m +2}\E(m)]

1
m

L(m)=E(m)F

(17)

K(m)E|sin 2—m) * where ¢ =sin® =sn u and E(®|m) is an incomplete elliptic
integral of the second kind.
\/; K (m)\/ ( m—2+ \/; ) ( m-—2— \/-nT ) The transformation which maps the upper half plane of
+ . Fig. 1(b) into a rectangle of Fig. 1(c) can be obtained from
2—m)y1—m *(10) with the substitution n = m.

Using the method as discussed in Section III, the char-

(16d) acteristic impedance of the structure of Fig. 5 is calculated

The corresponding Schwarz—Christeffel transformation from (16a) and (16b). Results are presented as constant
(n=m) for transforming one half of the structure, shown impedance contours in Fig. 4.
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B. Strip Conductor

For A = 0 a structure consisting of a planar strip above a
ground plane is obtained and the expression (17) reduces
to that obtained by Joshi, Rao, and Das [14].

For A -

n

b
ro_
3=,

These expressions can be used for the analysis of a vertical
strip above an infinite ground plane. The impedance for
this structure is obtained from the intersection of constant
impedance line with the r, /b axis of Fig. 4.

=0ande,=1 (182)

(18b)

C. Round Conductor

For the case of a circular conductor above a ground
plane

e,=e,=0and

Ao imm L(m)

ym  E(m)’

By using the value of the A from (19) in (17), the
conformal transformation in the case of a circular conduc-
tor placed above a single ground plane is obtained.

The comparison of the impedance data for a circle above
a ground plane with those evaluated using the method of
analysis suggested by Decreton [11] is presented in Fig. 6.

(19)

V. SUMMARY

The analysis presented in this paper is general and
embraces the cases of planar, elliptic, and circular conduc-
tors arbitrarily located between ground planes or above a
single ground plane. Depending upon the location of the
conductor between ground planes, there is a maximum
value of m for which the boundary of the conductor is an
ellipse. Impedance data for a circle above a ground plane,
evaluated by the present method show an excellent agree-
ment with those computed from Decreton [11]. In the
special case of a planar strip conductor, the present formu-
lation leads to expressions for the conformal transforma-
tion which are identical with those obtained previously
[13], [14].
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Calibration of Multiport Reflectometers by
Means of Four Open /Short Circuits

SHIHE LI, STUDENT MEMBER, IEEE, AND RENATO G. BOSISIO, MEMBER, IEEE

Abstract —This paper presents a simple method for calibrating any
practical multiport reflectometer by means of four reflection standards with
known complex reflection coefficients. It is shown that these four stan-
dards can be such that their reflection coefficient modulus = 1. Computer
simulation proves that no singularity appears for both ideal and nenideal
five- and six-port reflectometer in a wide range of phase distribution of
reflection coefficients. A group of calibration results for a practical simple
six-port is listed to show this calibration procedure; by the use of these
calibrated network parameters, some measurement results are presented
and compared with the values obtained at the National Bureaun of Standard,
US.A. ‘

Both computer simulation and experimental results show that the

Manuscript received November 16, 1981; revised February 23, 1982.

The authors are with Ecole Polytechnique, Electrical Engineering De-
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numerical singularities which may be encountered in multiport calibration
procedures are not an intrinsic properties of multiport but from related
mathematical treatment.

I. INTRODUCTION

T IS WELL KNOWN ' that the key problem for a

network analyzer is its calibration. The existing self-
calibration procedures for the six-port reflectometer [1], [3]
can provide accurate results but are complex and cannot be
directly used to calibrate the five-port. Another way to
calibrate a network analyzer is via some reflection stan-
dards, which would be very useful for microwave engineer-
ing application. Woods [4] has discussed this problem in
detail and concludes that seven standards are needed, of

- which at most five may have |I'| =1, to avoid numerical
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