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Analysis of an Elliptical Conducting Rod
Between Parallel Ground Planes by

Conformal Mapping

B. N. DAS AND K. V. SESHAGIRI RAO

Absfruct —The paper presents a conforrnal mapping anafysis of an

effiptic conducting rod between paraflel ground planes, where one of the

pnncipaf axes of the rod is parallel to but not necessarily centered between

the gronnd planes. The conditions under which this anafysis can be applied

to the cases of planar and circular conductors between gronnd planes are

obtained. Afso, the fornudation is extended to the special case of the

condnctor above a single ground plane.

I. INTRODUCTION

‘TRANSMISSION-line geometries consisting of a planar

strip conductor between parallel ground planes have

been studied using both analytical and numerical methods

[1]-[4]. Impedance data for transmission lines with circular

and elliptic inner conductors symmetrically located be-

tween ground planes have also been reported in the litera-

ture [5]–[9]. Also, Wheeler has suggested a method of

impedance evaluation for a number of other generalized

structures [10].

In the present work, the conformal transformation of a

conductor of elliptic cross section between the ground

planes into a parallel-plate configuration is developed. One

axis of the ellipse is oriented parallel to ground planes and

is displaced from the plane of symmetry. The formulation

is extended to the cases of asymmetrically located conduc-

tors of circular cross section and planar conductors along

either of the principal axes of the ellipse. This analysis

leads to a set of equations from which the characteristic

impedances of all the above structures can be determined.

The impedance data for two displaced positions are pre-

sented in the form of charts which can be used to obtain

the characteristic impedance of all the above structures.

The general formulation is then used to obtain the

conformal transformation for the case when one of the

ground planes is moved to infinity. The set of equations

obtained for general case reduce to a new set of equations

from which an impedance chart is obtained. For the partic-

ular case of a conductor of circular cross section above a

ground plane, the impedance data are compared with those

calculated using the transformation suggested by Decreton

[11].
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Fig. 1

II. CONFORMAL TRANSFORMATION

Fig. l(a) shows the coordinate system of a structure

which consists of a conductor with a curved boundary

located between the ground planes. The boundary of the

conductor is assumed to have structural symmetry with

respect to its principal axes which are oriented parallel toy

and x axes. The principal axis parallel to the x-axis is

displaced with respect to the plane of symmetry between

the ground planes. A Schwarz–Christeffd transformation

which transforms the upper half of Fig. l(b) into the

shaded portion of Fig. 1(a) is given by
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where Al, B1, CO, ~, m, and n are constants

(l- A,)<l B,=
aA1ln(M1)

[

a l—n. A

O<m<l
+jb+

m>n and 0<
n 277( A1+FJ) 27r(A1+~.~)

The term

is the curve factor [12]. (5C)
Carrying on integration, (1) takes the form

Z=x+jy= C1[u– A,{r(n, ulm)–fif(m, n,u))
~=1–

AF(sin-,~ m) ~,

+j&Ag(m, n,u)]+Bl (2) (Al+fi~)K(m)+n(A,+~~)

where Cl =COVZ, t=sin@=sn u, u= F(@lm) is the in-

[“

‘m+fi m+fi
complete elliptic integral of the first kind and m(n; u Im) is

the incomplete elliptic integral of the third kind. The I

~ sln-’&(l_k) +sin-’&(l+fi) (5d)

expressions for ~( m, n, u) and g(m, n, u) are given by

1

[

2(l-n)(m -n)+(l- nsn2u)(n +mn-2m)+2n~(l -n)(m-n)cnudnu
f(m, n,u)= in

1

(3)
2~(1–n)(m–n) n(2n–m– 1+2 (l–n)(m –n))(l–nsnzu)

r -1

1“

_, in +msnu _, (n

‘(m’n’ u)= & ‘ln F(l+fisnu] ‘S’n &-1

rl _
J7A

.S(m, n) (5e)
‘–277(A1+~. A)

(4)
J(m-n)(l -n)

where snu, cn u, and dn u are elliptic functions. r2—.
Boundary conditions required for the evaluation of the a &(A1+~.A)

constants in (2) are obtained from the coordinates of

(Pl Z=ja, t=– —

k )

P,(Z=j(b+rl), t= –1)

Pq(Z=(rz+jb), t= –aI)

l’A(Z=j(b-rl), t= +1)

(P5 z=o, t=+L

)F

Q(m, n) (5f)

and

2~m–n .Q(m, rz) rl

‘= fi.S(m, n) ‘~
(5g)

where K(m) and T( n; K(m) Im) are complete elliptic in-

tegrals of the first and third kind, respectively, T = 3.14159,

and

m+fi
S(nz, n)=sin-*

&(l+fi)

at the points T—m+ nSubstitution of the boundary conditions

shown in Fig. 1(a) into (2) and solving the resulting set of

equations results in the following relations among the -sm-’&(l-@ ‘5h)

constants Al, Bl, Cl, A, m, n, the ground plane spacing a,

the separation between strip and lower ground plane b,
Q(m, n)= F(sin-lallm)

and the semimajor and minor axes rl and rg of the ellipse –Alz-(n; sin-’ allm)

K(m)

‘1= z-(n, K(m)lm)
(5a)

~. A,lni141 _fiA,M2
+

2~(m–n)(l–n)

–a~(m–n)(l–n) (l-m)

“= fZT(A1+~OA)
(5b) M,=

(l+m–2n –2j(m–n)(l– n))

(5i)

(5j)
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[( )(2 l–n ?n-?z)+(n+ rnn-2rn)(l -na:)+2n/(1 -n)(m-n)/~
1

1. I J1–maf
&f2 = in

I

(5k)
2~(1–n)(m–n) n(2n–m– l+2{(m– n)(l–n))(l–na~)

~-~.A

“=m-+~

(51)

and

[{

A = sin ~ sin-l
–m+Ji . _, m+fi

}]
&(l-fi) ‘s’” &(I+&) “

(5m)

The curved boundary is transformed to a portion of the

real axis of the t plane for which [t] <1. For ltl <1, u,

n(n; ulm), ~(m, n, u), and g(m, n, u) are real. (2) can,
therefore, be easily separated into real and imaginary parts

which are given by

+
azfl.ln(illl)

(6a)
27r(A1+~. x)

(6b)

From (2), (5e), (5f), (6a), and (6b) the coordinates x and y

of a point on the curved boundary which are respectively

the real and imaginary parts of the complex variable Z

satisfy the equation of the form

(~)2+(~)2=A2(m, n,~) (7)

where the expression A’ is given by

‘2=(32+(+)2
The right-hand side of (7) is numerically evaluated for t

ranging from –1 to +1, O<m<O.99,0<A<co, and the

values of b/a equal to 0.1,0.4. Computed results reveal

that depending upon the value of b/a, A(m, n, X) is very

close to unity for certain range of values of m. The

boundary of the conductor assumes the form of an ellipse

under this condition. But this cross section near one or two

ground planes departs from the usual ellipse. For a particu-

lar value of m and b/a, the lengths of principal axes of the

ellipse depend on A. Depending upon the orientation of the

principal axes, the eccentricities of the ellipse are given by

/7

2
e, = 1–;, for rz a rl (8a)

{Tr 2

e2 = 1–:, for r2 < r,. (8b)

The transformation from the upper half plane of Fig.

l(b) to the structure in Fig. l(c) is given by [13]

/
w=u+jv=K1 f

dt
+ K2

o ~(1-t’)(1-mt’)

=K1F(@lm)+K2. (9)

Evaluating the constants K,, K2 from the coordinates of

the points PI, P2, Pq, and Pg, (Fig. 1), (9) is obtained as

W“=zl+jo=
‘(m) ‘(sin-’~‘)+jK/(m,–F(@lm) —

K(m) K(m)

(lo)

where U. and V. shown in Fig. l(c) are given by

Uo=l+

F(sin-,~ m)

K(m)
(ha)

~ = K’(m)
0 K(m) “

(llb)

III. CHARACTERISTIC IMPEDANCE

Half of the structure shown in Fig. l(a) is transformed

into parallel plates. The width of the parallel plates is 2

and V. is the separation between them. Therefore, the total

capacitance per unit length of the line is twice that of the

parallel plate capacitor in Fig. l(c) and is of the form

460C,
ct=—

V. “
(12a)

The characteristic impedance of the transmission line

can be determined from the formula

zo=2!g~o
@r
307r K’(m)_— .

- & K(m) “
(12b)
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A. Elliptic Conductor

It is evident from ( 12b) that the characteristic impedance

is dependent on the parameter m which is a function of the

shape and dimensions of the center conductor of the

transmission line.

For a known value of m and values of b/a equal to 0.1

and 0.4, values of n for A varying from O to m are

determined from (5d). Then, rl /a and rz /a as well as the

eccentricity of the ellipse can be computed. These results

are presented as constant impedance contours in Fig. 2 and

Fig. 3 in which r, /a and rz /a are coordinate axes. Imped-

ance data are presented for only those values of the param-

eters for which the cross section is an ellipse. From a

knowledge of rl /a and rz /a, the el = constant, ez =

constant contours can be easily determined. These con-

tours are straight lines passing through the origin in the

r, /a — rz /a plane. For example, the intersection of a

straight line, for which e, = ez = O, with the constant im-

pedance contours of Figs 2, 3, and 4 gives the impedances

of the circular conductor between ground planes. The cross

section of the conductor under this condition is a circule

for the values of the parameters of Figs. 2, 3, and 4. This

straight line makes an angle 45” with the rl /a axis. The

e,=f e,= 9798 e, =.9 t65 e,=, b’ e,= 6

.7 !
/ It

/

/{ //

o .7 .2 ,3 .4 .5 .6-2 ‘

=-
a

Fig. 4.

intersection of straight lines at angles greater than 450

(with respect to the r, /a axis) and the constant impedance

contours gives the impedances for elliptic conductor with

major axis oriented parallel to ground planes. Inclinations

less than 45° give ellipses with the major axis oriented

perpendicular to the ground planes. The coordinate axes

r, /a and rz /a represent cases for which the elliptic con-

ductors degenerate to straight lines. Movement along any

constant impedance contour from the rz /a axis to the r, /a

axis corresponds to variation of A from O to co.

B. Strip Conductor Parallel to Ground Planes

For A = O, it is found from (5e) and (8a) that

~= Oandel=l.

Thus, the ellipse degenerates to a straight line parallel to

the ground planes. The corresponding transformation is

given by

Z= C1[u– A,(n(n, ulm)–fif(m, n,u))]+B1 (13)

where the constants Cl, Bl, and Al are evaluated from (5 b),

(5c), and (5a) for A = O. (13) is of the same form as that

obtained by Rao and Das [13]. The corresponding imped-

ances for this strip of zero thickness are obtained from the

intersection of constant impedance contours with the rz /a

axis of Figs. 3 and 4.

C. Strip Conductor Perpendicular to Ground Planes

For ~ + co, it is clear from (5f) and 8(b) that

rz—= o e~=l
a

and

1

{

‘1 — _ sin– 1 m+fi . _, –m+fi
—
a—27r 1&(l+fi) ‘S’n &(bfi) “

(14)
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The ellipse in this case degenerates to a straight line

oriented in a direction perpendicular to ground planes. The

impedances for this case and obtained from the intersec-

tion of the constant impedance contours with r, /a axis of

Figs. 3 and 4.

D. Round Conductor

For a circular conductor (e, = ez = O) (8a), (8b), and (5g)

give

2~~. Q(m, n)

‘= fiS(m, n) -
(15)

Substituting (15) into (5a), (5b)Y (5c), and (5d) results in the

conformal transformation for an offset circular conductor

between ground planes.

IV. THE CONDUCTOR ABOVE A SINGLE GROUND

PLANE

A. Elliptic Conductor

When one of the ground planes is moved to infinity, the

configuration of Fig. l(a) reduces to the structure shown in

Fig. 5. In this particular case, a + co and it is found from

(5d) that n + m.

Dividing (5e) and (513 by (5d) the expressions for r, /b

and rz /b are found. For n + m these expressions assume

indeterminate 0/0 form. Applying L’Hospital’s rule and

substituting the expression for elliptic integral of the third

kind for n = m, it is found that

2AE(m)&

‘= [~fi+2~E(m)]

(16a)

2{G

‘= [~G+2~E(m)] “L(m) ‘16b)

/l-m L(m) rl
~=

()fiE(ni) “ i
(16c)

where E(m) is comple$e elliptic integral of the second kind

and

(-’(~m)‘)L(m)= E(m)F sin

(

&

‘K(m)E ‘h-’ (2-m) m
)

&K(m) ~(m-2+&)(m-2-fi)

+
(2-m){F’Z “

(16d)

The corresponding Schwarz–Christeffel transformation

(n= m) for transforming one half of the structure, shown

e,= t e,=s798 e,=,9765 et =.8
1 , ‘

,.6

*O

e660

976e

95s0

:/

~_
b

Fig. 5.

in Fig. 5, into upper half plane of the Fig. 1(b) is given by

–2b~~

‘= [.fi+wm)]

I. E(m) F(@lm)– K(m) E(@lm)

L

{

l+ Jz–/=
+ jAE(m)

I+&t
}]

where t = sin@= sn u and E(O Im ) is an incomplete elliptic

integral of the second kind.

The transformation which maps the upper half plane of

Fig. l(b) into a rectangle of Fig, 1(c) can be obtained from

(10) with the substitution n = m.

Using the method as discussed in Section III, the char-

acteristic impedance of the structure of Fig, 5 is calculated

from (16a) and (16b). Results are presented as constant

impedance contours in Fig. 4.
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Fig. 6. ++%+ is the present method. ——— is by the method in

literature.

B. Strip Conductor

For A = O a structure consisting of a planar strip above a

ground plane is obtained and the expression (17) reduces

to that obtained by Joshi, Rae, and Das [14].

For X+ca

(18a)

(18b)

These expressions can be used for the analysis of a vertical

strip above an infinite ground plane. The impedance for

this structure is obtained from the intersection of constant

impedance line with the r, /b axis of Fig. 4.

C. Round Conductor

For the case of a circular conductor above a ground

plane

e1=e2=0 and

(19)

By using the value of the X from (19) in (17), the

conformal transformation in the case of a circular conduc-

tor placed above a single ground plane is obtained.

The comparison of the impedance data for a circle above

a ground plane with those evaluated using the method of

analysis suggested by Decreton [11] is presented in Fig. 6.

v. SUMMARY

The analysis presented in this paper is general and

embraces the cases of planar, elliptic, and circular conduc-

tors arbitrarily located between ground planes or above a

single ground plane. Depending upon the location of the

conductor between ground planes, there is a maximum

value of m for which the boundary of the conductor is an

ellipse. Impedance data for a circle above a ground plane,

evaluated by the present method show an excellent agree-

ment with those computed from Decreton [11]. In the

special case of a planar strip conductor, the present formu-

lation leads to expressions for the conformal transforma-

tion which are identical with those obtained previously

[13], [14].
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Calibration of Multiport Reflectometers by
Means of Four Open/Short Circuits

SHIHE LI, STUDENT MEMBER, IEEE, AND RENATO G. BOSISIO, ~MBER, IEEE

Abstract —This paper presents a simple method for calibrating any

practical multiport refleetometer by means of four reflection standards with

known complex reflection coefficients. It is shown that these four stau-

dards can he such that their reflection coefficient modulus== 1. Computer

simulation proves that no siugnlarity appears for both ideaf and udnideaf

five- and six-port refleetometer in a wide range of phase distribution of

reflection coefficients. A group of calibration resnfts for a praeticaf simple

six-port is fisted to show this calibration procedure; by the use of these

calibrated network parameters, some measurement results are presented

and compared with the vahres obtained at the National Bureau of Standard,

U.S.A.

Both computer simulation and experimental resufts show that the

Manuscript received November 16, 1981; revised February 23, 1982.
The authors are with Ecole Polytechnique, Electrical Engineering De-

partment, P.O. Box 6079, Station “A”, Montreal, Quebec, Canada H3C
3A7.

numericaf singularities which may be encountered in muftiport calibration

procedures are not an intrinsic properties of multiport but from related

mathematical treatment.

I. INTRODUCTION

I T IS WELL KNOWN that the key problem for a

network analyzer is its calibration. The existing self-

calibration procedures for the six-port reflectometer [ 1], [3]

can provide accurate results but are complex and cannot be

directly used to calibrate the five-port. Another way to

calibrate a network analyzer is via some reflection stan-

dards, which would be very useful for microwave engineer-

ing application. Woods [4] has discussed this problem in

detail and concludes that seven standards are needed, of

which at most five may have 117[ =1, to avoid numerical
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